Using Machine Learning to Predict Student Success and Combat Inequity

Nathan Greenstein Grant Crider-Phillips

June 8, 2022

Welcome

Nathan Greenstein

Assistant Director of Machine Learning Academic Data Analytics, University of Oregon ngreenst@uoregon.edu

Grant Crider-Phillips

Machine Learning Analyst
Academic Data Analytics, University of Oregon
criderg@uoregon.edu

Academic Data Analytics

Academic Data Analytics

https://provost.uoregon.edu/analytics

- Office of the Provost
- Culture of data-driven decision-making
 - Shape policy
 - Prioritize equity
 - Increase transparency
- Focus areas:
 - Predicting student success
 - Understanding student feedback
 - Visualizing complex data
 - Understanding student and faculty progression

1. Project overview

2. Motivation

- 3. Our process
- 4. Early results and reflections
- 5. Discussion

Session Roadmap

Learning Goals

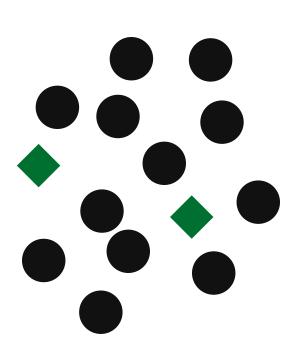
Understand applications of machine learning

Engage with interplay between machine learning and **equity**

Identify implementation opportunities at home institutions

Project Overview • 0000

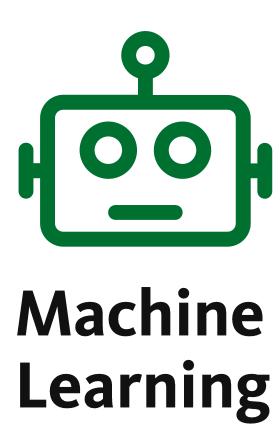
Prediction Task



Which incoming students will not persist to their second term?

- Predict before students matriculate
- Include all incoming first-time firstyear students
- Each year, use predictions to target early advising intervention

- Many varieties; today's focus is predictive analytics
- Harnesses large amounts of data and computing power
- Searches for **relationships** between inputs and outputs
- Finds patterns more complex than human eyes and traditional methods can handle
- Not magical, but powerful in the right situation



Motivation

••000

Central Challenge

Non-Retention

- Damaging to students and university
- Disproportionately impacts most
 vulnerable students

Timely Intervention

- **Difficult to recover** from early negative experiences
- Proactive
 interventions are
 more effective than
 reactive ones

Finite Resources

- **Fewer advisors** than students
- Must choose who receives a given intervention first

Central Challenge

Can we predict which incoming students will not persist to their second term?

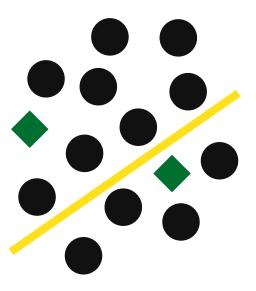
How early can we make our predictions?

Non-Retention

Timely Intervention

Finite Resources

- Early advising already in place
- Mathematical model already in use
 - Predicts first-term GPA
 - Traditional linear regression
 - Unable to predict second-term retention
- A useful tool, but a compromise
- Not evaluated for equity



Status Quo **Promises**

- Greater predictive power
- Better equipped for **challenging outcomes**
- Harnesses bigger, messier data

Concerns

- Will human stakeholders lose their voice?
- Might the algorithm be biased or inequitable?
- How much transparency will be offered?

Machine Learning

Our Process

Process Commitments

PARTICIPATORY

Engage meaningfully with a range of stakeholders

TRANSPARENT

Report honestly and accessibly on process and outcomes

EQUITY-ORIENTED

Apply lens throughout; demonstrably advance equity

Process Highlights

Participatory

- Partner closely with
 Undergraduate
 Education and
 Student Success
- Converse with other offices
- Reflect student body through diverse data sources

Transparent

- Report actively to UESS throughout
- Publicly disseminate methods and results
- Acknowledge strengths and limitations

Equity-Oriented

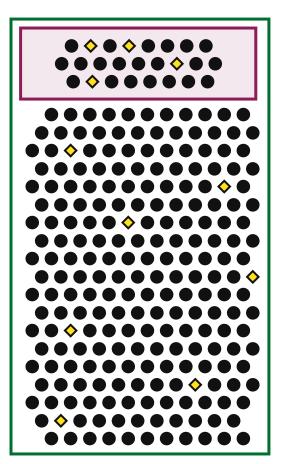
- With stakeholders,
 define equity
 standards
- Ground our work in existing scholarship
- Thoroughly vet model for equity and revise as necessary

Early Results & Reflections ••••

Model Performance, 2021 Cohort

ADA Model

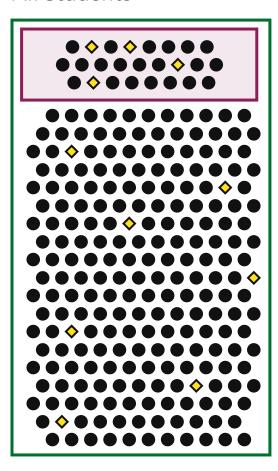
All Students



Model Performance, 2021 Cohort

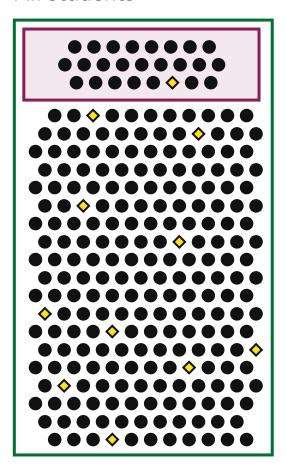
ADA Model

All Students



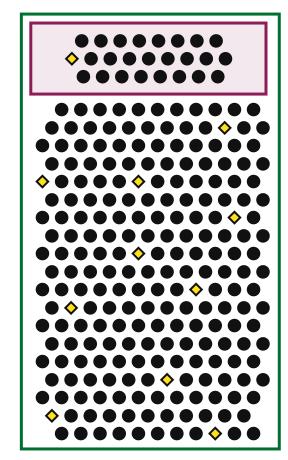
GPA Alternative

All Students



Random Lottery

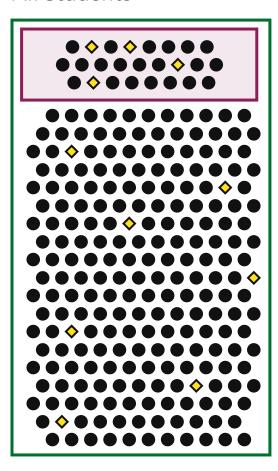
All Students



Model Performance, 2021 Cohort

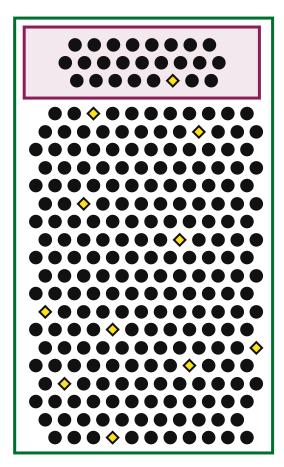
ADA Model

All Students



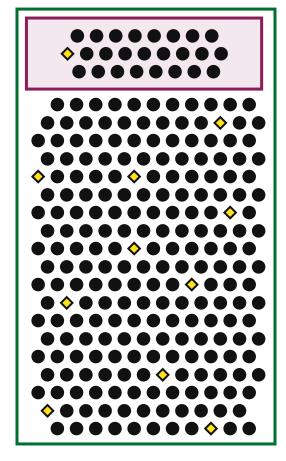
GPA Alternative

All Students



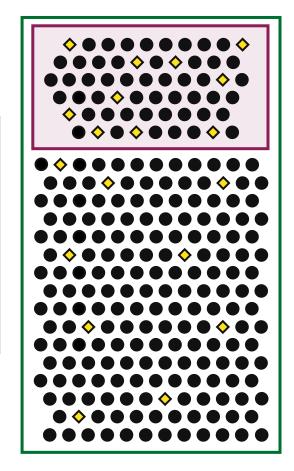
Random Lottery

All Students

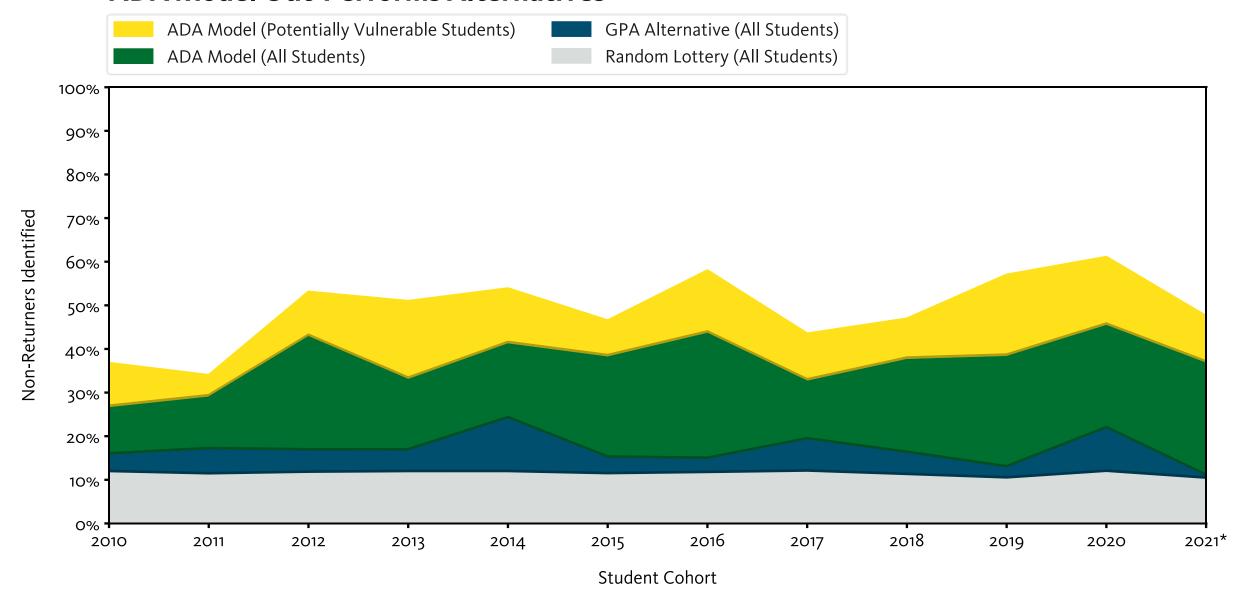


ADA Model

Potent. Vuln. Students



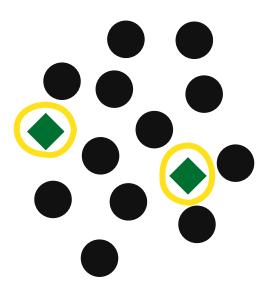
ADA Model Out-Performs Alternatives



^{*} The 2021 cohort was hidden from the model during development. Each cohort's performance is based on a model trained with all cohorts' data, except the cohort in question and 2021.

- Refine model **performance**
- Expand equity analysis; make any necessary adjustments
- Deploy for incoming students this year

Reflections



- Confident that performance exceeds alternatives
- Room to continue improving
- Growing confidence in model equity
- Process was extremely successful
- Thoughtful approach, plus working in-house, enables responsible machine learning
- Ultimately, harnessed powerful new tools without undermining human stakeholders or potentially vulnerable students

Discussion •••••

1. Project overview

2. Motivation

- 3. Our process
- 4. Early results and reflections
- 5. Discussion

Session Roadmap

Learning Goals

Understand applications of machine learning

Engage with interplay between machine learning and **equity**

Identify implementation opportunities at home institutions

Open Discussion

Thank you!

Nathan Greenstein Grant Crider-Phillips

Academic Data Analytics Office of the Provost University of Oregon

https://provost.uoregon.edu/analytics

Academic Data Analytics

