Using Machine Learning to Predict Student Success and Combat Inequity

Nathan Greenstein Grant Crider-Phillips

April 6, 2022

Welcome

Nathan Greenstein

Assistant Director of Machine Learning Academic Data Analytics, University of Oregon

ngreenst@uoregon.edu

Grant Crider-Phillips

Machine Learning Analyst Academic Data Analytics, University of Oregon

criderg@uoregon.edu

- Office of the Provost
- Culture of data-driven decision-making
 - Shape policy
 - Prioritize equity
 - Increase transparency
- Focus areas:
 - Predicting student success
 - Understanding student feedback
 - Visualizing complex data
 - Understanding student and faculty progression

1.	Project overview
2.	Motivation
3.	Our process
4.	Early results and reflections

Discussion

5.

Session Roadmap

Learning Goals

Understand applications of **machine learning**

Engage with interplay between machine learning and **equity**

Identify **implementation opportunities** at home institutions

Project Overview0000

Prediction Task

Which incoming students will not persist to their second term?

- Include all incoming first-time firstyear students
- Predict **before students matriculate**
- Each year, use predictions to target early advising intervention

- Many varieties; today's focus is predictive analytics
- Harnesses large amounts of **data** and **computing power**
- Searches for **relationships** between inputs and outputs
- Finds patterns **more complex** than human eyes and traditional methods can handle
- Not magical, but powerful in the right situation

Machine Learning

Motivation ••••••

Central Challenge

Non-Retention

- Damaging to students and university
- Disproportionately impacts most vulnerable students

Timely Intervention

- **Difficult to recover** from early negative experiences
- Proactive interventions are more effective than reactive ones

Finite Resources

- Fewer advisors than students
- **Must choose** who receives a given intervention first

Central Challenge

Can we predict which incoming students will not persist to their second term?

How early can we make our predictions?

Non-Retention

Early Intervention

Finite Resources

- Early advising already in place
- Mathematical model already in use
 - Predicts first-term GPA
 - o Traditional **linear regression**
 - Unable to predict second-term retention
- A useful tool, but a compromise
- Not evaluated for equity

Machine Learning

Our Process

Process Commitments

PARTICIPATORY

Engage meaningfully with a range of stakeholders

TRANSPARENT

Report honestly and accessibly on process and outcomes

EQUITY-ORIENTED

Apply lens throughout; demonstrably advance equity

Process Highlights

Participatory

- Partner closely with
 Undergraduate
 Education and
 Student Success
- **Converse** with other offices
- Reflect student body through **diverse data sources**

Transparent

- Report actively to UESS throughout
- Publicly disseminate methods and results
- Acknowledge
 strengths and
 limitations

Equity-Oriented

- With stakeholders,
 define equity standards
- Ground our work in existing scholarship
- Thoroughly vet model for equity and revise as necessary

Early Results & Reflections

Model Performance, 2021 Cohort

ADA Model

ADA Model

Potent. Vuln. Students

All Students

GPA Alternative

All Students

Random Lottery All Students

ADA Model Out-Performs Alternatives

Non-Returners Identified

* The 2021 cohort was hidden from the model during development to simulate an incoming cohort of students.

- Refine model **performance**
- Expand equity analysis; make any necessary adjustments
- Deploy for incoming students this year
- Begin next predictive analytics project

Reflections

- Confident that **performance exceeds alternatives**
- Room to continue improving
- Growing confidence in **model equity**
- **Process** was extremely successful
- Thoughtful approach, plus working in-house, enables responsible machine learning
- Ultimately, harnessed powerful new tools without undermining human stakeholders or potentially vulnerable students

Discussion

1.	Project overview
2.	Motivation
3.	Our process
4.	Early results and reflections

Discussion

5.

Session Roadmap

Learning Goals

Understand applications of **machine learning**

Engage with interplay between machine learning and **equity**

Identify **implementation opportunities** at home institutions

Open Discussion

Thank you!

Nathan Greenstein Grant Crider-Phillips

Academic Data Analytics Office of the Provost University of Oregon

https://provost.uoregon.edu/analytics

